AD-A253 313
RN

UNCLASSIFIED

ELECTE
JUL 311892 =

AFIT/EN-TR-92-2

Air Force Institute of Technology

Object-Oriented Design Unifies
Databases and Applications
Douglas E. Dyer Mark A. Roth

13 July 1992

Approved for public release; distribution unlimited

I

I

—26

TS

I

861

13 July 1992 Technical Report

Object-Oriented Design Unifies Databases and Applications

Douglas E. Dyer, Capt, USAF
Mark A. Roth, Maj, USAF

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/EN-TR-92-2

ASC/RWWW
Wright-Patterson AFB OH, 45433-6503

Distribution Unlimited

An object-ortented design methodology, such as the object modeling technique (OMT) of Rumbaugh et al.,
not only unifies database design with applications software design, it abstracts the design process and supports
implementation regardless of the data model used.

Object-Oriented Design, Database Design, Software Systems Modeling L1

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

"gyrin ATTATTTY TNSPECTED &,

Accesion For '
NTIS CRA&I H
DTIC TAB {
Unannounsed [,
Justification

Object-Oriented Design Unifies By

Dist ;bt:t?'.:': !

cmer e wpm————

Databases and Applications* T T
Douglas E. Dyer and Mark A. Roth Dict | "j :1 v

Abstract

An object-oriented design methodology, such as the object modeling
technique (OMT) of Rumbaugh et al., not only unifies database design with
applications software design, it abstracts the design process and supports
implementation regardless of the data model used.

1 Introduction

Database design and design of software applications have previously been two
separate activities. Increasingly, however, the object-oriented approach is unify-
ing design techniques, just as it has begun to unify database and software tech-
nologies. Object-oriented design methods, such as the Object Modeling Tech-
nique (OMT) of Rumbaugh et al., combine structural models, normally used in
database design, with dynamic and functional models, which are frequently used
in software design. Therefore, OMT and other, similar, object-oriented design
methodologies, provide a basis for both database design and application soft-
ware design. Furthermore, OMT is applicable regardless of which data model
is supported by the chosen database management system.

From our research, we have concluded that object-oriented design methods
have rendered separate design phases for an object-oriented database and the
object-oriented applications using it not only unnecessary, but undesirable. In-
stead, a single design phase should consider both at once. Furthermore, a unified
object-oriented design methodology does not limit the choice of implementation
language or database. In particular, traditional relational or network database
structures may be extracted {row the objert-oriented design when there is no

*This research funded by Joint Modeling and Simulation Systems Program Office,
ASC/RWWW, Wright-Patterson AFB, OH 45433

1T L A e mamme e -

Lo

need for an object-oriented database, or when the risk of using this relatively
new technology is considered too great.

This paper introduces OMT as an exemplar design methodology of the
object-oriented viewpoint and explains how we have arrived at these conclu-
sions.

2 Background

We have been studying design methodologies for object-oriented databases be-
cause of the increasing availability of database management systems having
object-oriented features. A number of authors have addressed object-oriented
design methods for application software development, especially for software
written in a general-purpose object-oriented programming language. However,
databases have characteristics which are distinct from normal software. Data-
bases are relatively passive compared to procedural programs and databases
differ from ordinary programs by retaining their data between program invoca-
tions. We felt that these kinds of differences would lead to different requirements
in design methods. '

We began our research by reviewing the literature for design methods in-
tended specifically for use with object-oriented databases. Different ‘object-
oriented’ DBMS have different capabilities and are based on different data mod-
els. At this time, there is really no characteristic set of features that can be
expected of an ‘object-oriented’ DBMS.! Therefore, it is understandable that
we found many papers with good and applicable ideas, but no ‘silver bullet’
solutions. The most comprehensive design methodologies applicable to object-
oriented databases are those which were originally designed for general software
development using object-oriented programming languages. There is now a con-
sensus in the programming community .that object-oriented design techniques
are useful for software design no matter what type of implementation language
is used [RBP*91, SM88]. In fact, object-oriented design methods are gaining ac-
ceptance as a general design technique. Based on our analysis, we believe that

!For example, some object-oriented databases are based on extended relational foundations,
while others add ne.cssary features to object-oriented programining languages such as C++.
There are even those based on a functional data model, or entirely new database languages.
While all of these databases share similar features, there are also enough differences to hinder
development of a global development methodology. There is a trend toward standardization,
however. The Object-Oriented Database System Manifesto [ABD*90] defines features that
should be common in object-oriented databases.

object-oriented design methods such as OMT are the best tool for designing
object-oriented databases.

3 Object Modeling Technique

The following brief discussion of OMT is meant to serve purely as introduction.
It cannot explain important details of OMT, nor provide the reader with many
illustrative examples which seem to be important for understanding. For a more
complete treatment, refer to [RBP*91].

As an outline, we will begin by identifying OMT’s basic strength. Next,
we’ll discuss its three analysis models and show how they relate to one another
and to different software efforts. Then, to show how OMT is used in design,
we’ll walk through an example while we describe OMT methodology.

3.1 Key Idea

Although it is certainly not the only utility, the primary usefulness of OMT is
for developing a concise, concrete, conceptual model of a real world problem
and communicating it among a group of designers, implementors, and users.
The design products of OMT capture the domain elements that describe who,
what, where, when, and how? (and, if followed religiously, why also) in formal
notation. By doing so, all the important information about an application and
the real world it models is explicitly represented and commonly understood.
The development team can manipulate the information and everyone has the
same idea about what the manipulations mean.

This conceptual model of the real world is recognized as being very impor-
tant. Brooks, for example, has said that the inherent complexity in software
development is in the manipulation of the essence of the domain problem, rather
than in the implementation of a correct conceptual model [Bro87]. By providing
a clear and concise conceptual model, OMT strongly supports implementation
of even the most complex applications using disparate implementation languages
and tools.

2We’ve used a metaphor from the world of newspaper journalism, where editors insist that
the first paragraph of copy contain all the essential information. This metaphor works because
both editors and designers desire concise clarity.

ordering indicates associations contain
implicit ordering constraints

qualification reduces multiplicity, a form of
ternary association

aggregation treated as a special
association

inheritance accompanies generalization
association

constraints explicitly included on object
diagram, rather than write-up

derived data explicitly indicated-may be
objects, links, attributes

homomorphism | explicitly indicated

Table 1: Cbject Model Extensions of E-R Model

3.2 Three Models and Their Notation

In OMT, there are actually three different models that make up what we have
called the conceptual model of an application domain. These three models
are tailored to capture the structural, dynamic, and functional facets of the
real-world domain. Together, they are more descriptive than any single model.
However the three models naturally vary in importance with the application
being developed.

The notation used to describe a design is critical to adequately representing
and communicating ideas. The notation must be expressive, yet simple. To
understand the choice of notation, first we must understand the underlying
models.

3.2.1 Object Model

An object model is used to identify and represent important objects, attributes,
and relationships between objects. The object model is an extension of the
familiar entity-relationship (E-R) model, but has additional constructs, as shown
in Table 1. It captures the static structure of entities in a domain. The object
model tells who or what is important in a particular domain, and how these
objects are related to one another.

Airplane Based_at Airport

Range \ Location
Max_speed Quantity Runway_length

fly_to

Figure 1: An Object Diagram with a Link Attribute

The object model has a corresponding object diagram which is similar to
an E-R diagram. See Figure 1. Objects are depicted by boxes indicating the
class name, attributes with their type and any default values, and operations
with their arguments and return types. Not all of this information is required,
but, if known, it can be captured on the diagram. The complete notation from
[RBP*91] is shown in Figure 2.

As in other object-oriented literature, OMT makes a distinction between
object classes or sets of individual objects and individual instance objects. For
example, the object diagram shown in Figure 1 corresponds to classes of air-
craft and airports, rather than any particular ones. Typically, we make object
diagrams on classes, not instances. Considering object classes is fundamental to
the concept of inheritance. Inheritance allows a concise and natural description
during design and causes software re-use on implementation. Instance objects
inherit class attributes and operations, i.e., those which are common to the class
as a whole. Many real-world objects can be considered part of a generalization
hierarchy, hence inheritance is a popular abstraction mechanism.

Relationships in OMT are called associations or links, depending on whether
they describe relationships on classes or instances, respectively. Associations on
an object diagram are indicated by a line drawn between boxes. The line end
points have symbols to represent the cardinality of the association, an important
piece of structural information. Associations can have attributes, just as in
the E-R model. If present, these attributes are called ‘link attributes’ and are
denoted by a box connected with a loop to the association. It is also possible to
model an association as a class by itself. Generalization (IS-A) and aggregation
(A-PART-OF) are treated as special types of associations. See Figure 2 for the
special notation used.

Class name

attribute-name i : data-typel = default value-1

attirbute-name?2: data-type2 = default value-2

operation-name | (arg-list1): result-typel

operation-name2(arg-1ist2): resuli-type2

one-to-one
many-to-one
O many-to-at-least-one
[/\\ one-to-one, with link attribute
attribute-
O one or more
name . Zero or more
Super-Class Aggregate-Class
l attribute
Sub-Class1 Sub-Class2 Part-Class
Generalization Aggregation

Figure 2: Object Diagram Notation

6

finish_service(normal)

landed ’(serviced)

touchdown finish_load

departure[cleared]

' enroute \,: ‘(loaded '

Figure 3: A State Diagram with an Event Attribute and an Event Precondition

Statel ‘l event l(attributes)[condition1}/action| (State2
do: activity! J

L

Figure 4: State Diagram Notation

3.2.2 Dynamic Model

The second type of model used in OMT represents when and where events
take place and how the events change the state of a system of objects. The
dynamic model captures state transitions and the preconditions which trigger
them. The dynamic model is concerned with timing and control issues and is
used to describe when and where actions occur. States correspond to changes
in one or more object attribute values. To represent this information, a state
diagram is used. Rounded boxes in the state diagram represent states, and the
lines connecting to boxes represent events. See Figure 3. State diagrams are
based on state transition diagrams. Their extended semantics include conditions
on transitions, attributes of triggering events, and finite duration activities. See

Weather

Database

Aircraft speed estimate arrival window

arrival
\ J constant_speed_eta

distance

location

calc dist: .ice

route to destination Output

Figure 5: A Data Flow Diagram

Figure 4 for OMT’s complete state diagram notation [RBP+91]. For complicated
cases, the nested notation of Harel’s Svatecharts [Har87)] is recommended to
improve scalability. Sometimes it’s helpful to use text scenarios and event traces
to build state diagrams. We’ll introduce scenarios when we discuss the OMT
methodology.

3.2.3 Functional Model

Finally, OMT’s functional model is used to specify what happens to objects
and how their attribute values are changed as a result. The functional model
specifies operations declaratively, in terms of a black-box translation function
between input and output values. In addition, the functional nodel is the right
place to specify any constraints on operations. The functional model is captured
on conventional data flow diagrams. See Figures 5 and 6.

3.2.4 The Relationship Between Models

The object, dynamic, and functional models complement one another to pro-
vide a complete and descriptive overall conceptual model. The object model

Object data store

Process

Data Flow

Figure 6: Data Flow Diagram Notation

captures object structure and names of important operations, but doesn’t de-
fire inputs or outputs of operations or specify their control. The dynamic model
uses the object states indicated by the object model and describes when object
values change, but doesn’t say anything about the transitions themselves. The
functional model also uses objects and attributes from the object model to
declaratively define operations, but it doesn’t specify when changes occur, or
how the changes are brought about.

3.2.5 Roles of Analysis Models in Design

The importance of the object, dynamic, and functional models depends on the
nature of the software system being designed. Because databases are gener-
ally static structures that don’t typically transform data, the object model is
dominant for database design. Event-driven or time-sensitive applications de-
pend heavily on the dynamic model. For example, the dynamic model is im-
portant in applications such as interactive interfaces or real-time simulations.
Computation-intensive programs are typically designed using functional models.
Compilers are the best example of purely functional programs.

3.3 OMT Methodology and a Design Example
3.3.1 Methodology Overview

OMT has four stages which are appropriate during different phases o' develop-
ment and have different end products.

1. Analysis. Developers work with domain experts to develop the basic con-
ceptual model of the real-world application. The overall conceptual model
is comprised of the object, dynamic, and functional models.

2. System Design. At a macro level, the system is partitioned and concur-
rency is identified. Ideally, the computer system architecture is selected
and allocated based on performance requirements. General data manage-
ment and control strategies are specified.

3. Object Design. Using the selected system and conceptual models, develop-
ers identify suita! - data structures aad algorithms for all needed objects,
largely by augmenting the conceptual model.

4. Implementation. Objects and operations are implemented in a particular
programming language and become an executable program.

These OMT stages are intended to be used iteratively and as needed, rather
than in the cookbook fashion that our presentation might suggest. Further-
more, OMT can be applied in either a conventional top-down fashion or a rapid
prototyping approach.

3.3.2 Details

We now embark on a description of how OMT is used to design a software
system. To make the discussion more concrete, we will walk through the design
using an example. However, the following methodology outline will be a useful
roadmap along the way.

Object Modeling Technique (OMT) Methodology Outline
Analysis
Object Model
Jointly construct a problem statement
Identify objects, associations, and attributes
Organize objects using inheritance; verify access paths
Refine object model iteratively

i0

Dynamic Model
Develop scenarios of typical transactions
Identify events and objects they impact
Make a state diagram
Verify model, even on odd cases
Functional Model
Identify input and output values with data sources and sinks
Make a data flow diagram
Identify constraints
State optimization requirements

System Design
Partition the system into vertical and horizontal subsystems
Identify inherent concurrency
Identify needed hardware and allocate subsystems to hardware resources
Specify a data store and management strategy
Identify global resources and a resource control strategy
Specify a software control mechanism
Address initialization, termination, and error behaviors

Object Design
Merge object, dynamic, and functional models
Make concrete objects and operations on them
Choose efficient algorithms and data structures
Refine the object structure using inheritance
Choose pointer or object representations for associations
Allocate objects to modules

Implementation

3.3.3 Analysis

Object Model At the onset, users try to convey their needs to developers
through dialog. It is helpful to write down a statement of the problem in text,
even if it is not complete or error-free. For our example problem, let’s design a
transportation simulator for analyzing military supply problems. Qur treatment
of this complex problem will be necessarily abstract, but it should be useful for
illustrating OMT in action. Our problem statement is shown below.

11

Problem statement: We need a simulator to determine the fea-
sibility of moving personnel and equipment from air and sea bases
in the US to bases overseas. We have a large amount of data on
different lift assets (mainly aircraft and ships), the available airports
and seaports, and the relevant characteristics of the equipment to be
moved. This data includes, among many other things, lift capacity,
speed, range, and current location, port capacity and location, and
size and weight of equipment. We also have a schedule of movements
to make. The schedule includes a group of personnel or equipment,
the destination port, and the required delivery date. We need to
determine whether we can transport everything on or before dates
in the movement schedule.

Object class candidates are the nouns in the problem statement, although
there may be other classes implied. Many nouns will not give rise to classes,
because they would be redundant, irrelevant, vague, or play some other part
in the design, such being an attribute or operation. For example, air bases
are also airports, so these two class are redundant. Because our focus is on
transportation, we use airport to describe an air base. By similarly culling
the other candidates, we obtain classes such as 1ift_asset, airport, seaport,
personnel, equipment, and movement_schedule. See Figure 7.

The problem statement has no explicit associations between these objects.
However, we can quickly see the need for some pieces of information which
are best modeled by associations. For example, personal and equipment are
located_at certain seaports. For that matter, lift assets are also based_at
an airport or seaport. In fact, movement_schedule is actually an association
between personnel or equipment and airport or seaport. Modeled in this
way, date is a link attribute. See Figure 8.

The problem statement lists some object attributes, although there would
be many more to consider if our treatment of this example were more de-
tailed. For now, let’s stick with the attributes explicitly mentioned. Therefore,
a 1lift_asset has a capacity, speed, range, and location. An airport or
seaport has a capacity and location. Equipment and personnel have a size
and weight. We can always add attributes if we discover a need for them later.

At this point, we can begin to see that some of our classes can be abstracted
to more general classes. For example, we have already abstracted from aircraft
and ships to 1ift_asset. We can do the same thing with airport and seaport,
obtaining port. Furthermore, from a transportation standpoint, personnel and

12

lift_asset

airport

seaport

movement_schedule

personnel

equipment

Figure 7: Transportation Object Classes

equipment share some of the same characteristics, and we can generalize those
two classes into the load class.

It’s also a good time to make sure that a data path exists for all anticipated
operations, and that unique values, when they occur, can be found. In fact,
we should iteratively go over our model to make sure to we haven’t missed any
objects or associations, misplaced any attributes or associations, or included any
unnecessary classes or associations. If the model is large, it will also behoove
us to group related classes into modules. For our example, we can assume that
our current object model is sufficient. Figure 9 is our final object diagram.

Dynamic Model We don’t see any stated timing or control requirements in
the problem statement. This is not unusual for a problem like this batch sim-
ulation. We would expect more dynamic requirements if our problem required
an interactive interface. For our problem, the dynamics depend somewhat on
the algorithm we choose to for the simulation. We start building the dynamic
model by building scenarios of typical interactions. By building scenarios, un-
stated preconditions and key events become clear. Here’s an example of a typical

13

lift_asset

based_at based_at

seaport airport
located_at located_at

needed_by needed_by

_ located_at located_at
[ome |

\—4

ed_by needed/by
II date date

personnel equipment

Figure 8: Some Associations Between Classes

scenario for airlifting personnel. We could make a similar scenario for sealift,
or we could make an abstract example using our abstract classes 1ift_asset,
port, and load.

Scenario for airlifting personnel:
A passenger aircraft becomes available
A group of people at an airport exist on the movement schedule
The group of people will fit on the aircraft and should be moved
The aircraft flies to the location of the group of pecple
The aircraft is serviced
The people board the aircraft
The aircraft flies to the destination airport
The people leave the aircraft
The aircraft is serviced
The movement schedule is updated
The aircraft becomes available

14

- based_at
lift_asset N port
capacity - capacity
speed quantity location
range
location
needed_by
| dat seaport airpe
. . cranes runway_
aircraft ship / length
door_size deck_area located_at
load
size
weight
personnel equipment

Some of the events in our scenario are hard to visualize or give an algo-
rithm for. For example, it is clear that somehow, we must make a decision
that allocates a particular aircraft to a particular group of people on the move-
ment schedule. At this point (and throughout the analysis stage), we should
avoid worrying about how to do things. Rather than finding algorithms for an

Figure 9: Transportation Simulator Object Diagram

operation, we need to focus on specifying the events that trigger it.

Figure 10 is a state diagram for this scenario. Notice that we have identified
preconditions on some triggering events. To complete the dynamic model, we
should make state diagrams for all significant interactions between objects. We
should also check states to make sure they correspond to objects. By doing so,
we may find that we need to add attributes to our object model. In our example

15

origin touchdown aircraft at people at
™| airport airport

finish servicing

finish

boarding

[aircraft at airport,
aircraft serviced]

people off
aircraft

destination
unioading touchdown

Figure 10: An Airlift State Diagram

problem, we have no aircraft attribute to denote the state of service, so we
should add this attribute if we are modeling to that level of detail. For brevity,
let’s assume our dynamic model is complete.

Functional Model Having modeled the structure and dynamics of our prob-
lem, we need to shift our focus on specifying the processes that produce the
output we need from the attribute values we have. When doing so, we need to
pay special attention to any constraints that are inherent in the domain and
to performance goals. Without considering inter-object constraints and system
optimization criteria, our specification will be dangerously incomplete.

From the problem statement, we can infer that the desired output is a report
which describes usages of lift assets and ports and a time line for delivery of
loads. Any late deliveries should be indicated. From this description, we can

16

movement_schedule object

generate

read
schedule

simulate
reports

Figure 11: A High-level Data Flow Diagram for the Transportation Simulator

make a high-level data flow diagram which can be recursively extended to add
detail. See Figure 11. For example, Figure 12 is a data flow diagram for the
calculation of the simulation itself.

Processes on a data flow diagram should be further specified if they are not
apparent from the process name and input/output values. Processes may be
specified using pre- and post-conditions, mathematical formulas or equations,
pseudo-code, or natural language.

How well does our system need to work and how should we state performance
requirements? Performance is often a hot topic of debate among simulation
users because standard metrics are not available. No simulation is perfect, but
we want our simulation to give us ‘reasonable’ results. As developers, we depend
on domain experts to define ‘reasonable,’ and it is our responsibility to obtain
this information and capture it in our models. For example, perhaps our model
must predict the average delivery date to within 3 days, given no asset or port
failure. A more common criteria is simulation run-time. For example, we might
specify that run-time is to be optimized, and a run-time of more that 1 hour is
unacceptable.

3.3.4 Iterating the Conceptual Model

Our brief treatment of the transportation simulator highlights the need to con-
tinually refine the conceptual model. Resources spent to make a clean, correct,

17

movement_schedule priority_movements
. ioh movement
size, weight .
=P Allocate lift > “report
load ‘ data
locations e
assets_available
locations date
ports
Free lift Calculate
ree .
lift and update delivery

asset

speed

Figure 12: A Detailed Data Flow Diagram

conceptual model return the highest development dividends. Later design and
implementation depend heavily on a thorough analysis and understanding.

3.3.5 System Design

Once we have done a thorough problem analysis and have a good conceptual
model, it’s time to consider system design. During this stage, we try to break
up the system into manageable chunks and develop an architecture for storing
data and executing processes.

Software systems are often partitioned using vertical slices and horizontal
layers. For our example, a general partitioning scheme is shown in Figure 13,
which we can recursively extend to show more detail. We can also see from our
dynamic model, that some objects are inherently concurrent. For example, it is
clear that the location of the aircraft before people have boarded is independent
of the location of the people. However, once the people board the airplane,
events which are significant to the airplane also impact the people. Identify-

18

simulation interface

simulator
schedule | movement | delivery data report
reader allocator | calculator | update generator

operating system

computer hardware

Figure 13: A Block Diagram for a Transportation Simulator

ing concurrency allows us to assign different parts of the system to different
processes and processors, if we so desire.

Too often, decisions about supporting hardware and software are made with-
out regard to design requirements, perhaps even prior to any consideration of
the design. However, a better approach is to identify architectural requirements
based on desired system performance. Even for developers who are constrained
to use available computer systems, it’s wise to document the ideal system base.

Historically, systems have been partitioned into data and operations. A data
management scheme is normally required. Two obvious choices are file-based
data stores and databases. For our example application, it seems wise to choose
a database because we can expect that the data will be used by many users at
different levels of detail for multiple applications. Using a database will provide
a consistent interface as well as the normal database features which include
transactions control, integrity, multi-user access, etc. With a file-based system,
we would have to implement all of these services and make data structures for
the sizable data inherent in our domain. Having chosen a data manager, we now
need to consider an overall control scheme for operations. If we want to build
an interruptible simulator, we probably want an event-driven scheme at a high
level, and a procedure-driven scheme at lower levels. A batch simulator can be
controlled entirely by a procedure-driven scheme.

19

based_at

> basel
' aircraft-typel ‘: ;L 4 “ -
(aircraft-typeZ 'C) 10

12

.
] base3
-

Figure 14: Implementation of an Bidirectional Association with a Link Attribute

3.3.6 Object Design

During object design, the three analysis models are merged and operations on
concrete objects are identified. Efficient algorithms and data structures are cho-
sen. A control strategy is established. Object structure is refined to maximize
benefits from inheritance and associations are specified as objects or pointers.
Finally, objects and associations are allocated into modules to promote modu-
larity and re-use.

Early on in our research, we analvzed different data structures in terms of
performance. Consider for example, the object diagram shown in Figure 1 which
describes the objects airplane and airport, along with the based_at associ-
ation between them. Because based_at has quantity as a link attribute, we
will need to model the association as an object as shown in Figure 14. An alter-
native way of representing the number of aircraft based_at a particular airport
is to use an attribute of airport which might have a linked list of pointers to
and numbers of different aircraft in the aircraft class. See Figure 15. The
alternative representation is only slightly more efficient, it turns out, and it can
result in worse storage requirements. Furthermore, it reduces the clarity of the
model. By analyzing similar examples, we have concluded that alternative data
structures should be avoided in most cases. Instead, indexes or hash functions
can be used to improve data access performance.

20

\ //10) //

aircraft-typel) (aircraft-type2

Figure 15: A Linked-List Implementation of the Same Association

For our example problem, we will retain objects as the data structure. We
will implement associations without link attributes as simple pointers. Associ-
atiuns with attributes, such as our based_at example, will be implemented as
objects having at least two pointer attributes which point at the objects involved
in the association.

3.3.7 Implementation

Implementation, in OMT, is the same as for other design methods. We sim-
ply choose an appropriate programming language and use well-known, sound,
cocing practices to turn our design into the desired system. For our example,
we might choose a object-oriented database written an extended programming
language like persistent C++ , and then we could write the rest of the applica-
tion in C++ to simplify the interface between data and operations. For exam-
ple, ObjectStore is a commercial object-oriented database written in persistent
C++. In ObjectStore, we would implement, say, the airplane class simply by
using persistent memory which is allocated using special overloaded operator
‘new’ available in ObjectStore. Using persistent memory, we would define the
airplane object just as we would have in normal C++.

21

Implementation itself is not part of design, but it is included in OMT because
design and development are meant to be iterative (although we huve presented
OMT as if it were sequential). Some of the changes in design are stimulated by
issues encountered during implementation.

4 OMT as a Database Design Tool

Database management systems are evolving from the pure relational model to
other models, many of which have object-oriented features. Of the current
‘object-oriented’ databases. some are just extensions of the original relational
model, while others arc purely object-oriented or even based on the functjonal
model. Whichever of these models become dominant (if any), previous methods
of doing database design will be increasingly inappropriate. Why is this so? It
is because database technology and application software technology are moving
toward one another, decreasing the once valued separation befween them, and
thus decreasing the complexity of considering both application and database
design at once. In the past, databases required very strict interfaces to ap-
plication software to simplify the data model, manage complexity, and supply
required services according to performance constraints. For example, we know
of one transportation simulator which uses a relational database as a simple
backbone for applications written in many different programming languages.
The relational database is useful because it was easy to build, understandable,
bulletproof, and fast enough for the job. The many issues surrounding transac-
tion management and resource control are now much better understood; data-
base technology can move forward and still retain virtues already won. Today’s
research is focused on decreasing the ‘impedance mismatch®’ between applica-
tion programming languages and database data manipulation languages. On
the application software side, programming languages are recognizing the need
to support data modeling. Two ke indicators that lend evidence to this the-
ory are the rapid acceptance of object-oriented languages and the interest in
adding persistent types to languages. In some sense, databases and application
software have already merged. Some object-oriented database systems are just
applications embedded in persistent C++.

*Impedance mismatch refers to the requirement for disparate data structures and different
language syntax between application programs and the database which serves them. For
current relational databases, for example, applications must download data into local data
structures implemented in the application programming language, manipulate the data, then
upload the data back into database tables. Moreover, the database query language has a
different syntax with no control constructs or variables [Cat91, ABD*90].

22

The result of merging database and application software technologies is that
the design methods used will also merge. As a result, designing applications and
database simultaneously will become less complex. Once designers can handle
the additional complexity, a single design phase is desirable, because considering
the system globally often yields a better solution than if one design decision is
made at a time. It will no longer be common to first design the database, and
then use the stubbed-out database to build applications. Instead, the system
design will be done as a single phase. and independent modules will be designed
concurrently. How will this shitt impact current designers? Because the shift is
evolutionary in nature, the design process itself will only be re-adjusted, rather
than overhauled. Database designers will work more closely with applications
designers, and tasks done by each group will become more similar.

Consider the case of design using OMT, for example. Because the object
model of OMT is based on and extends the E-R model, OMT is equally or more
effective for design of relational, network, or hierarchical databases. Because
OMT has more expressiveness than the E-R model, we can expect it to be more
useful for advanced, more expressive data models »nd particularly suited to
object-oriented database design. However, regardless of the data model used,
it should be the application requirements that drive the design, rather than
locally-made choices and existing frameworks as has been done previously.

5 Handling Persistence

Some object-oriented databases are based on extended programming languages
such as persistent versions of C++. These database systems provide a wide-
open interface to the capabilities of the underlying language, making it possible
to write applications and databases in a single language. However, that means
that some data will be of a transient nature, while the remainder will need to
be persistent. For example, a database object may have a procedure attached
to it (a method, for example, or a derived attribute). The procedure may
have transient ‘local’ variables, but might depend as well as on some persistent
attributes of the object.

From a modeling standpoint, we need to be able to ideatify persistence on
our design documents. The simple way to do this in OMT is to add persistence
to type information and indicate it on the object diagram. This is a minor
addition to OMT notation which makes it applicable to our needs. Using this
extended notation, persistence can be modeled even at the sub-object level, if
desired.

23

Associations, particularly generalization, can constrain objects to be refer-
entially persistent. For example, sub-class objects of a persistent class inher..
persistence, as do instances of a class. Any bi-directional association normally
requires all objects involved to either be persistent or transient. The alter-
native to this approach is to provide recognition and automu.tic dissolution of
associations for disappearing transient objects. Some object-oriented databases
perform persistence checking by reachability; persistenc checking would be a
desirable service in any automated design tool as well. In current object-oriented

.

design methodologies, referential pers .i» ce 1 ust be checked manually.

6 Summarizing Remarks

At least a dozen different object-oriented -+ sign methodologies have been pro-
posed over the last five years. The notation and terminology for these meth-
ods differ more than their underlying concepts. Comparisons of the different
methodologies appe=r in several papers [BLN86, Wal92]. We would like to ad-
dress some of these issues, especially as they relate to OMT.

Although there are some fundamental differences between methods, one use-
1] comparison is the level of detail supported or demanded. There is a tradeoff
between the costs and benefits of representing design information. For exam-
ple, the basic entity-relationship model captures less detail than OMT’s object
model, but it is also simpler to construct. The design models of Shlaer and
Mellor [SM88] provide another example—they are less rigorous than those of
OMT, but can be built more quickly.

The level of detail supported or required by a design technique is not as
important as its inherent expressiveness. Given a little experience, most design
methods can be tailored to represent information which is important for a par-
ticular database or application. However, the clarity of representation can vary
between models. For example, OMT’s notation seems more clear than Booch’s,
at least to some [Wal92].

Several authors have criticized OMT’s choice of the data flow diagram as
notation for the functional model. The main criticism is that data flow diagrams
lack clarity and do not aid in implementation [HC91, CHB92, Wal92]. One
research group has suggested the use of text transition rules with pre- and
post-conditions as a substitute for d ‘*a flow diagrams [HC91]. To us, this is a
reasonable suggestion when concrete detail is needed, but it isn’t necessary in
some cases.

24

OMT is certainly not the only proposed object-oriented design method, but
it currently seems to be the most complete and consistent one. Because it
subsumes the E-R model, we have concluded that it can be used to model both
applications and databases. Being based on the object-oriented paradigm, OMT
is particularly well suited for designs implemented in object-oriented languages
or in object-oriented database systems, if persistence is annotated as necessary.
The merging of design methodology reflects the larger merging of database and
application software toward the object-oriented view.

References

[ABD*90]

[BLNS6]

[Bro87]

[Cat91]

[CHB92]

[Har87]

[HC91]

[RBP+91]

[SM88]

Malcolm Atkinson, Francois Bancilhon, David DeWitt, Klaus Dit-
trich, David Maier, and Sanley Zdonik. The object-oriented database
system manifesto, 1990.

C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis
of methodologies for database schema integration. ACM Computing
Surveys, 18, 1986.

Frederick P. Brooks. No silver bullet—essence and accidents of soft-
ware engineering. IEEE Computer, April 1987.

R. G. G. Cattell. Object Data Management: Object-oriented and
Eztended Relational Database Systems. Addison-Wesley, 1991.

Derek Coleman, Fiona Hayes, and Stephen Bear. Introducing ob-
jectcharts or how to use statecharts in object-oriented design. IEEE
Transactions on Software Engineering, 18(1), 1992.

David Harel. Statecharts: a visual formalism for complex systems.
The Science of Computer Programming, 8, 1987.

Fiona Hayes and Derek Coleman. Coherent models for object-
oriented analysis. In ACM OOPSLA ’91 Conference Proceedings,
1991.

James Rumbaugh, Michael Blaha, William Premerlani, Frederick
Eddy, and William Lorensen. Object-Oriented Modeling and Design.
Prentice Hall, Englewood Cliffs, New Jersey, 1991.

Sally Shlaer and Stephen J. Mellor. Object-Oriented Systcms Anal-
ysis. Yourdon Press, Loglewood Cliffs, New Jersey, 1988.

25

[Wal92] Ian J. Walker. Requirements of an object-oriented design method.
Software Engineering Journal, March 1992.

26

